Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nat Commun ; 15(1): 3313, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632281

RESUMEN

Recombination is a key molecular mechanism for the evolution and adaptation of viruses. The first recombinant SARS-CoV-2 genomes were recognized in 2021; as of today, more than ninety SARS-CoV-2 lineages are designated as recombinant. In the wake of the COVID-19 pandemic, several methods for detecting recombination in SARS-CoV-2 have been proposed; however, none could faithfully confirm manual analyses by experts in the field. We hereby present RecombinHunt, an original data-driven method for the identification of recombinant genomes, capable of recognizing recombinant SARS-CoV-2 genomes (or lineages) with one or two breakpoints with high accuracy and within reduced turn-around times. ReconbinHunt shows high specificity and sensitivity, compares favorably with other state-of-the-art methods, and faithfully confirms manual analyses by experts. RecombinHunt identifies recombinant viral genomes from the recent monkeypox epidemic in high concordance with manually curated analyses by experts, suggesting that our approach is robust and can be applied to any epidemic/pandemic virus.


Asunto(s)
COVID-19 , Pandemias , Humanos , SARS-CoV-2 , Genoma Viral , Recombinación Genética , Filogenia
3.
Sci Rep ; 14(1): 6142, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480771

RESUMEN

At the beginning of 2020, Italy was the country with the highest number of COVID-19 cases, not only in Europe, but also in the rest of the world, and Lombardy was the most heavily hit region of Italy. The objective of this research is to understand which variables have determined the prevalence of cases in Lombardy and in other highly-affected European regions. We consider the first and second waves of the COVID-19 pandemic, using a set of 22 variables related to economy, population, healthcare and education. Regions with a high prevalence of cases are extracted by means of binary classifiers, then the most relevant variables for the classification are determined, and the robustness of the analysis is assessed. Our results show that the most meaningful features to identify high-prevalence regions include high number of hours spent in work environments, high life expectancy, and low number of people leaving from education and neither employed nor educated or trained.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Italia/epidemiología , Europa (Continente)/epidemiología
4.
Database (Oxford) ; 20232023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37410916

RESUMEN

With the progression of the COVID-19 pandemic, large datasets of SARS-CoV-2 genome sequences were collected to closely monitor the evolution of the virus and identify the novel variants/strains. By analyzing genome sequencing data, health authorities can 'hunt' novel emerging variants of SARS-CoV-2 as early as possible, and then monitor their evolution and spread. We designed VariantHunter, a highly flexible and user-friendly tool for systematically monitoring the evolution of SARS-CoV-2 at global and regional levels. In VariantHunter, amino acid changes are analyzed over an interval of 4 weeks in an arbitrary geographical area (continent, country, or region); for every week in the interval, the prevalence is computed and changes are ranked based on their increase or decrease in prevalence. VariantHunter supports two main types of analysis: lineage-independent and lineage-specific. The former considers all the available data and aims to discover new viral variants. The latter evaluates specific lineages/viral variants to identify novel candidate designations (sub-lineages and sub-variants). Both analyses use simple statistics and visual representations (diffusion charts and heatmaps) to track viral evolution. A dataset explorer allows users to visualize available data and refine their selection. VariantHunter is a web application free to all users. The two types of supported analysis (lineage-independent and lineage-specific) allow user-friendly monitoring of the viral evolution, empowering genomic surveillance without requiring any computational background. Database URL http://gmql.eu/variant_hunter/.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Mapeo Cromosómico
5.
PLoS One ; 18(4): e0281052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37115764

RESUMEN

BACKGROUND: SARS-CoV-2 viremia has been found to be a potential prognostic factor in patients hospitalized for COVID-19. OBJECTIVE: We aimed to assess the association between SARS-CoV-2 viremia and mortality in COVID-19 hospitalized patients during different epidemic periods. METHODS: A prospective COVID-19 registry was queried to extract all COVID-19 patients with an available SARS-CoV-2 viremia performed at hospital admission between March 2020 and January 2022. SARS-CoV-2 viremia was assessed by means of GeneFinderTM COVID-19 Plus RealAmp Kit assay and SARS-CoV-2 ELITe MGB® Kit using <45 cycle threshold to define positivity. Uni and multivariable logistic regression model were built to assess the association between SARS-CoV-2 positive viremia and death. RESULTS: Four hundred and forty-five out of 2,822 COVID-19 patients had an available SARS-CoV-2 viremia, prevalently males (64.9%) with a median age of 65 years (IQR 55-75). Patients with a positive SARS-CoV-2 viremia (86/445; 19.3%) more frequently presented with a severe or critical disease (67.4% vs 57.1%) when compared to those with a negative SARS-CoV-2 viremia. Deceased subjects (88/445; 19.8%) were older [75 (IQR 68-82) vs 63 (IQR 54-72)] and showed more frequently a detectable SARS-CoV-2 viremia at admission (60.2% vs 22.7%) when compared to survivors. In univariable analysis a positive SARS-CoV-2 viremia was associated with a higher odd of death [OR 5.16 (95% CI 3.15-8.45)] which was confirmed in the multivariable analysis adjusted for age, biological sex and, disease severity [AOR 6.48 (95% CI 4.05-10.45)]. The association between positive SARS-CoV-2 viremia and death was consistent in the period 1 February 2021-31 January 2022 [AOR 5.86 (95% CI 3.43-10.16)] and in subgroup analysis according to disease severity: mild/moderate [AOR 6.45 (95% CI 2.84-15.17)] and severe/critical COVID-19 patients [AOR 6.98 (95% CI 3.68-13.66)]. CONCLUSIONS: SARS-CoV-2 viremia resulted associated to COVID-19 mortality and should be considered in the initial assessment of COVID-19 hospitalized patients.


Asunto(s)
COVID-19 , Masculino , Humanos , Persona de Mediana Edad , Anciano , SARS-CoV-2 , Viremia , Hospitalización , Estudios Prospectivos
6.
Comput Struct Biotechnol J ; 20: 4238-4250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35945925

RESUMEN

The inflation of SARS-CoV-2 lineages with a high number of accumulated mutations (such as the recent case of Omicron) has risen concerns about the evolutionary capacity of this virus. Here, we propose a computational study to examine non-synonymous mutations gathered within genomes of SARS-CoV-2 from the beginning of the pandemic until February 2022. We provide both qualitative and quantitative descriptions of such corpus, focusing on statistically significant co-occurring and mutually exclusive mutations within single genomes. Then, we examine in depth the distributions of mutations over defined lineages and compare those of frequently co-occurring mutation pairs. Based on this comparison, we study mutations' convergence/divergence on the phylogenetic tree. As a result, we identify 1,818 co-occurring pairs of non-synonymous mutations showing at least one event of convergent evolution and 6,625 co-occurring pairs with at least one event of divergent evolution. Notable examples of both types are shown by means of a tree-based representation of lineages, visually capturing mutations' behaviors. Our method confirms several well-known cases; moreover, the provided evidence suggests that our workflow can explain aspects of the future mutational evolution of SARS-CoV-2.

7.
Sci Data ; 9(1): 260, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650205

RESUMEN

Since the outbreak of the COVID-19 pandemic, many research organizations have studied the genome of the SARS-CoV-2 virus; a body of public resources have been published for monitoring its evolution. While we experience an unprecedented richness of information in this domain, we also ascertained the presence of several information quality issues. We hereby propose CoV2K, an abstract model for explaining SARS-CoV-2-related concepts and interactions, focusing on viral mutations, their co-occurrence within variants, and their effects. CoV2K provides a clear and concise route map for understanding different connected types of information related to the virus; it thus drives a process of data and knowledge integration that aggregates information from several current resources, harmonizing their content and overcoming incompleteness and inconsistency issues. CoV2K is available for exploration as a graph that can be queried through a RESTful API addressing single entities or paths through their relationships. Practical use cases demonstrate its application to current knowledge inquiries.


Asunto(s)
COVID-19 , Modelos Biológicos , SARS-CoV-2 , Conjuntos de Datos como Asunto , Humanos , Mutación , Pandemias
8.
Bioinformatics ; 38(7): 1988-1994, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35040923

RESUMEN

MOTIVATION: The ongoing evolution of SARS-CoV-2 and the rapid emergence of variants of concern at distinct geographic locations have relevant implications for the implementation of strategies for controlling the COVID-19 pandemic. Combining the growing body of data and the evidence on potential functional implications of SARS-CoV-2 mutations can suggest highly effective methods for the prioritization of novel variants of potential concern, e.g. increasing in frequency locally and/or globally. However, these analyses may be complex, requiring the integration of different data and resources. We claim the need for a streamlined access to up-to-date and high-quality genome sequencing data from different geographic regions/countries, and the current lack of a robust and consistent framework for the evaluation/comparison of the results. RESULTS: To overcome these limitations, we developed ViruClust, a novel tool for the comparison of SARS-CoV-2 genomic sequences and lineages in space and time. ViruClust is made available through a powerful and intuitive web-based user interface. Sophisticated large-scale analyses can be executed with a few clicks, even by users without any computational background. To demonstrate potential applications of our method, we applied ViruClust to conduct a thorough study of the evolution of the most prevalent lineage of the Delta SARS-CoV-2 variant, and derived relevant observations. By allowing the seamless integration of different types of functional annotations and the direct comparison of viral genomes and genetic variants in space and time, ViruClust represents a highly valuable resource for monitoring the evolution of SARS-CoV-2, facilitating the identification of variants and/or mutations of potential concern. AVAILABILITY AND IMPLEMENTATION: ViruClust is openly available at http://gmql.eu/viruclust/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Mapeo Cromosómico
9.
Artículo en Inglés | MEDLINE | ID: mdl-32750853

RESUMEN

The integration of genomic metadata is, at the same time, an important, difficult, and well-recognized challenge. It is important because a wealth of public data repositories is available to drive biological and clinical research; combining information from various heterogeneous and widely dispersed sources is paramount to a number of biological discoveries. It is difficult because the domain is complex and there is no agreement among the various metadata definitions, which refer to different vocabularies and ontologies. It is well-recognized in the bioinformatics community because, in the common practice, repositories are accessed one-by-one, learning their specific metadata definitions as result of long and tedious efforts, and such practice is error-prone. In this paper, we describe META-BASE, an architecture for integrating metadata extracted from a variety of genomic data sources, based upon a structured transformation process. We present a variety of innovative techniques for data extraction, cleaning, normalization and enrichment. We propose a general, open and extensible pipeline that can easily incorporate any number of new data sources, and propose the resulting repository-already integrating several important sources-which is exposed by means of practical user interfaces to respond biological researchers' needs.


Asunto(s)
Genómica , Metadatos , Biología Computacional , Almacenamiento y Recuperación de la Información
10.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 1956-1967, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34166199

RESUMEN

Traditional drug experiments to find synergistic drug pairs are time-consuming and expensive due to the numerous possible combinations of drugs that have to be examined. Thus, computational methods that can give suggestions for synergistic drug investigations are of great interest. Here, we propose a Non-negative Matrix Tri-Factorization (NMTF) based approach that leverages the integration of different data types for predicting synergistic drug pairs in multiple specific cell lines. Our computational framework relies on a network-based representation of available data about drug synergism, which also allows integrating genomic information about cell lines. We computationally evaluate the performances of our method in finding missing relationships between synergistic drug pairs and cell lines, and in computing synergy scores between drug pairs in a specific cell line, as well as we estimate the benefit of adding cell line genomic data to the network. Our approach obtains very good performance (Average Precision Score equal to 0.937, Pearson's correlation coefficient equal to 0.760) when cell line genomic data and rich data about synergistic drugs in a cell line are considered. Finally, we systematically searched our top-scored predictions in the available literature and in the NCI ALMANAC, a well-known database of drug combination experiments, proving the goodness of our findings.


Asunto(s)
Algoritmos , Biología Computacional , Biología Computacional/métodos , Bases de Datos Factuales , Sinergismo Farmacológico , Genómica
11.
Front Bioeng Biotechnol ; 10: 945474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686258

RESUMEN

Mesenchymal stem cells (MSCs) are known to be ideal candidates for clinical applications where not only regenerative potential but also immunomodulation ability is fundamental. Over the last years, increasing efforts have been put into the design and fabrication of 3D synthetic niches, conceived to emulate the native tissue microenvironment and aiming at efficiently controlling the MSC phenotype in vitro. In this panorama, our group patented an engineered microstructured scaffold, called Nichoid. It is fabricated through two-photon polymerization, a technique enabling the creation of 3D structures with control of scaffold geometry at the cell level and spatial resolution beyond the diffraction limit, down to 100 nm. The Nichoid's capacity to maintain higher levels of stemness as compared to 2D substrates, with no need for adding exogenous soluble factors, has already been demonstrated in MSCs, neural precursors, and murine embryonic stem cells. In this work, we evaluated how three-dimensionality can influence the whole gene expression profile in rat MSCs. Our results show that at only 4 days from cell seeding, gene activation is affected in a significant way, since 654 genes appear to be differentially expressed (392 upregulated and 262 downregulated) between cells cultured in 3D Nichoids and in 2D controls. The functional enrichment analysis shows that differentially expressed genes are mainly enriched in pathways related to the actin cytoskeleton, extracellular matrix (ECM), and, in particular, cell adhesion molecules (CAMs), thus confirming the important role of cell morphology and adhesions in determining the MSC phenotype. In conclusion, our results suggest that the Nichoid, thanks to its exclusive architecture and 3D cell adhesion properties, is not only a useful tool for governing cell stemness but could also be a means for controlling immune-related MSC features specifically involved in cell migration.

12.
Gigascience ; 122022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-37222749

RESUMEN

BACKGROUND: Literature about SARS-CoV-2 widely discusses the effects of variations that have spread in the past 3 years. Such information is dispersed in the texts of several research articles, hindering the possibility of practically integrating it with related datasets (e.g., millions of SARS-CoV-2 sequences available to the community). We aim to fill this gap, by mining literature abstracts to extract-for each variant/mutation-its related effects (in epidemiological, immunological, clinical, or viral kinetics terms) with labeled higher/lower levels in relation to the nonmutated virus. RESULTS: The proposed framework comprises (i) the provisioning of abstracts from a COVID-19-related big data corpus (CORD-19) and (ii) the identification of mutation/variant effects in abstracts using a GPT2-based prediction model. The above techniques enable the prediction of mutations/variants with their effects and levels in 2 distinct scenarios: (i) the batch annotation of the most relevant CORD-19 abstracts and (ii) the on-demand annotation of any user-selected CORD-19 abstract through the CoVEffect web application (http://gmql.eu/coveffect), which assists expert users with semiautomated data labeling. On the interface, users can inspect the predictions and correct them; user inputs can then extend the training dataset used by the prediction model. Our prototype model was trained through a carefully designed process, using a minimal and highly diversified pool of samples. CONCLUSIONS: The CoVEffect interface serves for the assisted annotation of abstracts, allowing the download of curated datasets for further use in data integration or analysis pipelines. The overall framework can be adapted to resolve similar unstructured-to-structured text translation tasks, which are typical of biomedical domains.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2/genética , COVID-19/genética , Mutación , Cinética
13.
Sci Rep ; 11(1): 21068, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702903

RESUMEN

Since its emergence in late 2019, the diffusion of SARS-CoV-2 is associated with the evolution of its viral genome. The co-occurrence of specific amino acid changes, collectively named 'virus variant', requires scrutiny (as variants may hugely impact the agent's transmission, pathogenesis, or antigenicity); variant evolution is studied using phylogenetics. Yet, never has this problem been tackled by digging into data with ad hoc analysis techniques. Here we show that the emergence of variants can in fact be traced through data-driven methods, further capitalizing on the value of large collections of SARS-CoV-2 sequences. For all countries with sufficient data, we compute weekly counts of amino acid changes, unveil time-varying clusters of changes with similar-rapidly growing-dynamics, and then follow their evolution. Our method succeeds in timely associating clusters to variants of interest/concern, provided their change composition is well characterized. This allows us to detect variants' emergence, rise, peak, and eventual decline under competitive pressure of another variant. Our early warning system, exclusively relying on deposited sequences, shows the power of big data in this context, and concurs to calling for the wide spreading of public SARS-CoV-2 genome sequencing for improved surveillance and control of the COVID-19 pandemic.


Asunto(s)
COVID-19/prevención & control , COVID-19/terapia , COVID-19/virología , SARS-CoV-2/genética , Aminoácidos/metabolismo , Análisis por Conglomerados , Biología Computacional/métodos , Minería de Datos , Europa (Continente)/epidemiología , Genoma Viral , Humanos , Japón/epidemiología , Filogenia , Factores de Tiempo , Estados Unidos/epidemiología
14.
Sci Rep ; 11(1): 21174, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707187

RESUMEN

Lockdowns implemented to address the COVID-19 pandemic have disrupted human mobility flows around the globe to an unprecedented extent and with economic consequences which are unevenly distributed across territories, firms and individuals. Here we study socioeconomic determinants of mobility disruption during both the lockdown and the recovery phases in Italy. For this purpose, we analyze a massive data set on Italian mobility from February to October 2020 and we combine it with detailed data on pre-existing local socioeconomic features of Italian administrative units. Using a set of unsupervised and supervised learning techniques, we reliably show that the least and the most affected areas persistently belong to two different clusters. Notably, the former cluster features significantly higher income per capita and lower income inequality than the latter. This distinction persists once the lockdown is lifted. The least affected areas display a swift (V-shaped) recovery in mobility patterns, while poorer, most affected areas experience a much slower (U-shaped) recovery: as of October 2020, their mobility was still significantly lower than pre-lockdown levels. These results are then detailed and confirmed with a quantile regression analysis. Our findings show that economic segregation has, thus, strengthened during the pandemic.


Asunto(s)
COVID-19/epidemiología , Pandemias , SARS-CoV-2 , COVID-19/economía , Control de Enfermedades Transmisibles/economía , Control de Enfermedades Transmisibles/métodos , Humanos , Renta , Italia/epidemiología , Aprendizaje Automático , Pandemias/economía , Pobreza , Cuarentena/economía , Análisis de Regresión , Factores Socioeconómicos , Viaje
15.
Database (Oxford) ; 20212021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34585726

RESUMEN

EpiSurf is a Web application for selecting viral populations of interest and then analyzing how their amino acid changes are distributed along epitopes. Viral sequences are searched within ViruSurf, which stores curated metadata and amino acid changes imported from the most widely used deposition sources for viral databases (GenBank, COVID-19 Genomics UK (COG-UK) and Global initiative on sharing all influenza data (GISAID)). Epitopes are searched within the open source Immune Epitope Database or directly proposed by users by indicating their start and stop positions in the context of a given viral protein. Amino acid changes of selected populations are joined with epitopes of interest; a result table summarizes, for each epitope, statistics about the overlapping amino acid changes and about the sequences carrying such alterations. The results may also be inspected by the VirusViz Web application; epitope regions are highlighted within the given viral protein, and changes can be comparatively inspected. For sequences mutated within the epitope, we also offer a complete view of the distribution of amino acid changes, optionally grouped by the location, collection date or lineage. Thanks to these functionalities, EpiSurf supports the user-friendly testing of epitope conservancy within selected populations of interest, which can be of utmost relevance for designing vaccines, drugs or serological assays. EpiSurf is available at two endpoints. Database URL: http://gmql.eu/episurf/ (for searching GenBank and COG-UK sequences) and http://gmql.eu/episurf_gisaid/ (for GISAID sequences).


Asunto(s)
Sustitución de Aminoácidos , Antígenos Virales/química , Epítopos/química , Internet , Metadatos , SARS-CoV-2/química , Motor de Búsqueda , Programas Informáticos , Aminoácidos/química , Aminoácidos/inmunología , Antígenos Virales/inmunología , COVID-19/virología , Epítopos/inmunología , Humanos , SARS-CoV-2/inmunología
16.
Nucleic Acids Res ; 49(15): e90, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34107016

RESUMEN

Variant visualization plays an important role in supporting the viral evolution analysis, extremely valuable during the COVID-19 pandemic. VirusViz is a web-based application for comparing variants of selected viral populations and their sub-populations; it is primarily focused on SARS-CoV-2 variants, although the tool also supports other viral species (SARS-CoV, MERS-CoV, Dengue, Ebola). As input, VirusViz imports results of queries extracting variants and metadata from the large database ViruSurf, which integrates information about most SARS-CoV-2 sequences publicly deposited worldwide. Moreover, VirusViz accepts sequences of new viral populations as multi-FASTA files plus corresponding metadata in CSV format; a bioinformatic pipeline builds a suitable input for VirusViz by extracting the nucleotide and amino acid variants. Pages of VirusViz provide metadata summarization, variant descriptions, and variant visualization with rich options for zooming, highlighting variants or regions of interest, and switching from nucleotides to amino acids; sequences can be grouped, groups can be comparatively analyzed. For SARS-CoV-2, we manually collect mutations with known or predicted levels of severity/virulence, as indicated in linked research articles; such critical mutations are reported when observed in sequences. The system includes light-weight project management for downloading, resuming, and merging data analysis sessions. VirusViz is freely available at http://gmql.eu/virusviz/.


Asunto(s)
COVID-19/virología , Visualización de Datos , SARS-CoV-2/química , SARS-CoV-2/genética , Secuencia de Aminoácidos , Secuencia de Bases , Bases de Datos Factuales , Humanos , Bases del Conocimiento , SARS-CoV-2/clasificación , Sudáfrica/epidemiología , Estados Unidos/epidemiología
17.
Nat Commun ; 12(1): 2439, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972523

RESUMEN

Chromatin compartmentalization reflects biological activity. However, inference of chromatin sub-compartments and compartment domains from chromosome conformation capture (Hi-C) experiments is limited by data resolution. As a result, these have been characterized only in a few cell types and systematic comparisons across multiple tissues and conditions are missing. Here, we present Calder, an algorithmic approach that enables the identification of multi-scale sub-compartments at variable data resolution. Calder allows to infer and compare chromatin sub-compartments and compartment domains in >100 cell lines. Our results reveal sub-compartments enriched for poised chromatin states and undergoing spatial repositioning during lineage differentiation and oncogenic transformation.

18.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34020536

RESUMEN

MOTIVATION: With the spreading of biological and clinical uses of next-generation sequencing (NGS) data, many laboratories and health organizations are facing the need of sharing NGS data resources and easily accessing and processing comprehensively shared genomic data; in most cases, primary and secondary data management of NGS data is done at sequencing stations, and sharing applies to processed data. Based on the previous single-instance GMQL system architecture, here we review the model, language and architectural extensions that make the GMQL centralized system innovatively open to federated computing. RESULTS: A well-designed extension of a centralized system architecture to support federated data sharing and query processing. Data is federated thanks to simple data sharing instructions. Queries are assigned to execution nodes; they are translated into an intermediate representation, whose computation drives data and processing distributions. The approach allows writing federated applications according to classical styles: centralized, distributed or externalized. AVAILABILITY: The federated genomic data management system is freely available for non-commercial use as an open source project at http://www.bioinformatics.deib.polimi.it/FederatedGMQLsystem/. CONTACT: {arif.canakoglu, pietro.pinoli}@polimi.it.


Asunto(s)
Conjuntos de Datos como Asunto , Genómica , Difusión de la Información , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lenguajes de Programación
19.
BMC Bioinformatics ; 22(1): 250, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33992077

RESUMEN

BACKGROUND: A pair of genes is defined as synthetically lethal if defects on both cause the death of the cell but a defect in only one of the two is compatible with cell viability. Ideally, if A and B are two synthetic lethal genes, inhibiting B should kill cancer cells with a defect on A, and should have no effects on normal cells. Thus, synthetic lethality can be exploited for highly selective cancer therapies, which need to exploit differences between normal and cancer cells. RESULTS: In this paper, we present a new method for predicting synthetic lethal (SL) gene pairs. As neighbouring genes in the genome have highly correlated profiles of copy number variations (CNAs), our method clusters proximal genes with a similar CNA profile, then predicts mutually exclusive group pairs, and finally identifies the SL gene pairs within each group pairs. For mutual-exclusion testing we use a graph-based method which takes into account the mutation frequencies of different subjects and genes. We use two different methods for selecting the pair of SL genes; the first is based on the gene essentiality measured in various conditions by means of the "Gene Activity Ranking Profile" GARP score; the second leverages the annotations of gene to biological pathways. CONCLUSIONS: This method is unique among current SL prediction approaches, it reduces false-positive SL predictions compared to previous methods, and it allows establishing explicit collateral lethality relationship of gene pairs within mutually exclusive group pairs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genes Letales , ADN
20.
Eur J Hum Genet ; 29(5): 745-759, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33456056

RESUMEN

Within the GEN-COVID Multicenter Study, biospecimens from more than 1000 SARS-CoV-2 positive individuals have thus far been collected in the GEN-COVID Biobank (GCB). Sample types include whole blood, plasma, serum, leukocytes, and DNA. The GCB links samples to detailed clinical data available in the GEN-COVID Patient Registry (GCPR). It includes hospitalized patients (74.25%), broken down into intubated, treated by CPAP-biPAP, treated with O2 supplementation, and without respiratory support (9.5%, 18.4%, 31.55% and 14.8, respectively); and non-hospitalized subjects (25.75%), either pauci- or asymptomatic. More than 150 clinical patient-level data fields have been collected and binarized for further statistics according to the organs/systems primarily affected by COVID-19: heart, liver, pancreas, kidney, chemosensors, innate or adaptive immunity, and clotting system. Hierarchical clustering analysis identified five main clinical categories: (1) severe multisystemic failure with either thromboembolic or pancreatic variant; (2) cytokine storm type, either severe with liver involvement or moderate; (3) moderate heart type, either with or without liver damage; (4) moderate multisystemic involvement, either with or without liver damage; (5) mild, either with or without hyposmia. GCB and GCPR are further linked to the GCGDR, which includes data from whole-exome sequencing and high-density SNP genotyping. The data are available for sharing through the Network for Italian Genomes, found within the COVID-19 dedicated section. The study objective is to systematize this comprehensive data collection and begin identifying multi-organ involvement in COVID-19, defining genetic parameters for infection susceptibility within the population, and mapping genetically COVID-19 severity and clinical complexity among patients.


Asunto(s)
Bancos de Muestras Biológicas , COVID-19/genética , Predisposición Genética a la Enfermedad , Sistema de Registros , SARS-CoV-2 , Manejo de Especímenes , Adolescente , Adulto , COVID-19/epidemiología , Femenino , Humanos , Italia , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...